Typical Fluorescent Sensors Exploiting Molecularly Imprinted Hydrogels for Environmentally and Medicinally Important Analytes Detection

Gels. 2021 Jun 8;7(2):67. doi: 10.3390/gels7020067.

Abstract

In this work, two typical fluorescent sensors were generated by exploiting molecularly imprinted polymeric hydrogels (MIPGs) for zearalenone (ZON) and glucuronic acid (GA) detection, via the analyte's self-fluorescence property and receptor's fluorescence effect, respectively. Though significant advances have been achieved on MIPG-fluorescent sensors endowed with superior stability over natural receptor-sensors, there is an increasing demand for developing sensing devices with cost-effective, easy-to-use, portable advantages in terms of commercialization. Zooming in on the commercial potential of MIPG-fluorescent sensors, the MIPG_ZON is synthesized using zearalanone (an analogue of ZON) as template, which exhibits good detection performance even in corn samples with a limit of detection of 1.6 μM. In parallel, fluorescein-incorporated MIPG_GA is obtained and directly used for cancer cell imaging, with significant specificity and selectivity. Last but not least, our consolidated application results unfold new opportunities for MIPG-fluorescent sensors for environmentally and medicinally important analytes detection.

Keywords: fluorescent sensors; glucuronic acid; molecularly imprinted polymeric hydrogels; synthetic receptors; zearalenone.