MiR-181a-5p Regulates NIS Expression in Papillary Thyroid Carcinoma

Int J Mol Sci. 2021 Jun 4;22(11):6067. doi: 10.3390/ijms22116067.

Abstract

NIS is a potent iodide transporter encoded by the SLC5A5 gene. Its expression is reduced in papillary thyroid carcinoma (PTC). In this study we analyzed the impact of miR-181a-5p on NIS expression in the context of PTC. We used real-time PCR to analyze the expression of SLC5A5 and miR-181a-5p in 49 PTC/normal tissue pairs. Luciferase assays and mutagenesis were performed to confirm direct binding of miR-181a-5p to the 3'UTR of SLC5A5 and identify the binding site. The impact of modulation of miR-181a-5p using appropriate plasmids on endogenous NIS and radioactive iodine accumulation was verified. We confirmed downregulation of SLC5A5 and concomitant upregulation of miR-181a-5p in PTC. Broadly used algorithms did not predict the binding site of miR-181a-5p in 3'UTR of SLC5A5, but we identified and confirmed the binding site through mutagenesis using luciferase assays. In MCF7 and HEK293-flhNIS cell lines, transfection with mir-181a-expressing plasmid decreased endogenous SLC5A5, whereas silencing of miR-181a-5p increased it. We observed similar tendencies in protein expression and radioactive iodine accumulation. This study shows for the first time that miR-181a-5p directly regulates SLC5A5 expression in the context of PTC and may decrease efficacy of radioiodine treatment. Accordingly, miR-181a-5p may serve as an emerging target to enhance the efficacy of radioactive iodine therapy.

Keywords: NIS; PTC; SLC5A5; miR-181a-5p; microRNA; papillary thyroid carcinoma; thyroid carcinoma.

MeSH terms

  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Case-Control Studies
  • Female
  • Follow-Up Studies
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Male
  • MicroRNAs / genetics*
  • Middle Aged
  • Prognosis
  • Symporters / genetics
  • Symporters / metabolism*
  • Thyroid Cancer, Papillary / genetics
  • Thyroid Cancer, Papillary / metabolism
  • Thyroid Cancer, Papillary / pathology*
  • Thyroid Neoplasms / genetics
  • Thyroid Neoplasms / metabolism
  • Thyroid Neoplasms / pathology*
  • Tumor Cells, Cultured

Substances

  • Biomarkers, Tumor
  • MIrn181 microRNA, human
  • MicroRNAs
  • Symporters
  • sodium-iodide symporter