Guaranteed distributed machine learning: Privacy-preserving empirical risk minimization

Math Biosci Eng. 2021 Jun 1;18(4):4772-4796. doi: 10.3934/mbe.2021243.

Abstract

Distributed learning over data from sensor-based networks has been adopted to collaboratively train models on these sensitive data without privacy leakages. We present a distributed learning framework that involves the integration of secure multi-party computation and differential privacy. In our differential privacy method, we explore the potential of output perturbation and gradient perturbation and also progress with the cutting-edge methods of both techniques in the distributed learning domain. In our proposed multi-scheme output perturbation algorithm (MS-OP), data owners combine their local classifiers within a secure multi-party computation and later inject an appreciable amount of statistical noise into the model before they are revealed. In our Adaptive Iterative gradient perturbation (MS-GP) method, data providers collaboratively train a global model. During each iteration, the data owners aggregate their locally trained models within the secure multi-party domain. Since the conversion of differentially private algorithms are often naive, we improve on the method by a meticulous calibration of the privacy budget for each iteration. As the parameters of the model approach the optimal values, gradients are decreased and therefore require accurate measurement. We, therefore, add a fundamental line-search capability to enable our MS-GP algorithm to decide exactly when a more accurate measurement of the gradient is indispensable. Validation of our models on three (3) real-world datasets shows that our algorithm possesses a sustainable competitive advantage over the existing cutting-edge privacy-preserving requirements in the distributed setting.

Keywords: Internet of Things; differential privacy; fully homomorphic encryption; human activity recognition; privacy-preserving; secure multi-party computations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Machine Learning
  • Privacy*
  • Research Design