Vapor exposure to Δ9-tetrahydrocannabinol (THC) slows locomotion of the Maine lobster (Homarus americanus)

Pharmacol Biochem Behav. 2021 Aug:207:173222. doi: 10.1016/j.pbb.2021.173222. Epub 2021 Jun 29.

Abstract

Rationale: Despite a long history of use in synaptic physiology, the lobster has been a neglected model for behavioral pharmacology. A restaurateur proposed that exposing lobster to cannabis smoke reduces anxiety and pain during the cooking process. It is unknown if lobster gill respiration in air would result in significant Δ9-tetrahydrocannabinol (THC) uptake and whether this would have any detectable behavioral effects.

Objective: The primary goal was to determine tissue THC levels in the lobster after exposure to THC vapor. Secondary goals were to determine if THC vapor altered locomotor behavior or nociception.

Methods: Tissue samples were collected (including muscle, brain and hemolymph) from Homarus americanus (N = 3 per group) following 30 or 60 min of exposure to vapor generated by an e-cigarette device using THC (100 mg/mL in a propylene glycol vehicle). Separate experiments assessed locomotor behavior and hot water nociceptive responses following THC vapor exposure.

Results: THC vapor produced duration-related THC levels in all tissues examined. Locomotor activity was decreased (distance, speed, time-mobile) by 30 min inhalation of THC. Lobsters exhibit a temperature-dependent withdrawal response to immersion of tail, antennae or claws in warm water; this is novel evidence of thermal nociception for this species. THC exposure for 60 min had only marginal effect on nociception under the conditions assessed.

Conclusions: Vapor exposure of lobsters, using an e-cigarette based model, produces dose-dependent THC levels in all tissues and reduces locomotor activity. Hot water nociception was temperature dependent, but only minimal anti-nociceptive effect of THC exposure was confirmed.

Keywords: Cannabis; Crustacean; E-cigarette; Nociception.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Administration, Inhalation
  • Animals
  • Cooking / methods
  • Dronabinol / administration & dosage
  • Dronabinol / analysis
  • Dronabinol / pharmacology*
  • E-Cigarette Vapor / administration & dosage
  • E-Cigarette Vapor / pharmacology*
  • Electronic Nicotine Delivery Systems
  • Female
  • Hot Temperature
  • Locomotion / drug effects*
  • Maine
  • Male
  • Marijuana Smoking / metabolism
  • Nephropidae*
  • Nociception / drug effects*
  • Pain / drug therapy
  • Rats

Substances

  • E-Cigarette Vapor
  • Dronabinol