PyUNIxMD: A Python-based excited state molecular dynamics package

J Comput Chem. 2021 Sep 15;42(24):1755-1766. doi: 10.1002/jcc.26711. Epub 2021 Jul 1.

Abstract

Theoretical/computational description of excited state molecular dynamics is nowadays a crucial tool for understanding light-matter interactions in many materials. Here we present an open-source Python-based nonadiabatic molecular dynamics program package, namely PyUNIxMD, to deal with mixed quantum-classical dynamics for correlated electron-nuclear propagation. The PyUNIxMD provides many interfaces for quantum chemical calculation methods with commercial and noncommercial ab initio and semiempirical quantum chemistry programs. In addition, the PyUNIxMD offers many nonadiabatic molecular dynamics algorithms such as fewest-switch surface hopping and its derivatives as well as decoherence-induced surface hopping based on the exact factorization (DISH-XF) and coupled-trajectory mixed quantum-classical dynamics (CTMQC) for general purposes. Detailed structures and flows of PyUNIxMD are explained for the further implementations by developers. We perform a nonadiabatic molecular dynamics simulation for a molecular motor system as a simple demonstration.

Keywords: decoherence; exact factorization; mixed quantum-classical dynamics; nonadiabatic molecular dynamics.

Publication types

  • Research Support, Non-U.S. Gov't