Nanosecond pulsed deep-red laser source by intracavity frequency-doubled crystalline Raman laser

Opt Lett. 2021 Jul 1;46(13):3207-3210. doi: 10.1364/OL.430163.

Abstract

We demonstrated a deep-red laser source by intracavity frequency-doubled crystalline Raman laser for the first time, to the best of our knowledge. The actively Q-switched 1314 nm Nd:LiYF4 laser was first converted to the eye-safe Raman laser using a KGd(WO4)2 (KGW) crystal, which was subsequently frequency-doubled in a bismuth borate crystal. Benefiting from the KGW bi-axial properties, the deep-red laser source was able to lase separately at two different spectral lines at 730 and 745 nm. Under an optimal repetition rate of 4 kHz, the maximum average powers of 1.7 and 2.0 W were attained with good beam quality of M2≈1.7. The corresponding pulse durations were determined to be 3.0 and 2.8 ns with the peak powers up to approximately 140 and 180 kW, respectively.