NFC-Powered Implantable Device for On-Body Parameters Monitoring With Secure Data Exchange Link to a Medical Blockchain Type of Network

IEEE Trans Cybern. 2023 Jan;53(1):31-43. doi: 10.1109/TCYB.2021.3088711. Epub 2022 Dec 23.

Abstract

Implantable devices represent the future of remote medical monitoring and administration of both chemical and physical therapies to the patients. Although some of these devices are already in the market, the security mechanisms deployed inside them to withstand deliberate external influence are still decades away from the robust digital data security schemes employed in modern distributed networks these days. Medical data theft, spoofing, and disclosure pose serious threats that can ultimately lead to individual and social stigmas or even death. In this article, we present a small-form and batteryless implantable device with acquisition channels for biopotential (30-dB gain and 16-Hz bandwidth), arterial pulse oximetry, and temperature (0.12°C accuracy) recordings, suitable for cardiovascular, neuronal, and endocrine parameters assessment. The proposed device is powered by the near-field communication (NFC) interface with an external mobile phone, with a power consumption of 0.9 mW and achieving the full operation for distances close to 1 cm under the skin. In situ encryption of the acquired physiological signals is performed by a lightweight and short-term symmetric-key distribution scheme with data stream hopping, in order to ensure secure data transference over the air between the patient and trusted entities only, complemented by data storage, processing, and recovery through a medical blockchain type of network that involves the main stakeholders inside a medical community.

MeSH terms

  • Blockchain*
  • Computer Security
  • Humans