The superior cervical ganglia modulate ventilatory responses to hypoxia independently of preganglionic drive from the cervical sympathetic chain

J Appl Physiol (1985). 2021 Aug 1;131(2):836-857. doi: 10.1152/japplphysiol.00216.2021. Epub 2021 Jul 1.

Abstract

Superior cervical ganglia (SCG) postganglionic neurons receive preganglionic drive via the cervical sympathetic chains (CSC). The SCG projects to structures like the carotid bodies (e.g., vasculature, chemosensitive glomus cells), upper airway (e.g., tongue, nasopharynx), and to the parenchyma and cerebral arteries throughout the brain. We previously reported that a hypoxic gas challenge elicited an array of ventilatory responses in sham-operated (SHAM) freely moving adult male C57BL6 mice and that responses were altered in mice with bilateral transection of the cervical sympathetic chain (CSCX). Since the CSC provides preganglionic innervation to the SCG, we presumed that mice with superior cervical ganglionectomy (SCGX) would respond similarly to hypoxic gas challenge as CSCX mice. However, while SCGX mice had altered responses during hypoxic gas challenge that occurred in CSCX mice (e.g., more rapid occurrence of changes in frequency of breathing and minute ventilation), SCGX mice displayed numerous responses to hypoxic gas challenge that CSCX mice did not, including reduced total increases in frequency of breathing, minute ventilation, inspiratory and expiratory drives, peak inspiratory and expiratory flows, and appearance of noneupneic breaths. In conclusion, hypoxic gas challenge may directly activate subpopulations of SCG cells, including subpopulations of postganglionic neurons and small intensely fluorescent (SIF) cells, independently of CSC drive, and that SCG drive to these structures dampens the initial occurrence of the hypoxic ventilatory response, while promoting the overall magnitude of the response. The multiple effects of SCGX may be due to loss of innervation to peripheral and central structures with differential roles in breathing control.NEW & NOTEWORTHY We present data showing that the ventilatory responses elicited by a hypoxic gas challenge in male C57BL6 mice with bilateral superior cervical ganglionectomy are not equivalent to those reported for mice with bilateral transection of the cervical sympathetic chain. These data suggest that hypoxic gas challenge may directly activate subpopulations of superior cervical ganglia (SCG) cells, including small intensely fluorescent (SIF) cells and/or principal SCG neurons, independently of preganglionic cervical sympathetic chain drive.

Keywords: C57BL6 mice; breathing responses; cervical sympathetic chain; hypoxic gas exposure; superior cervical ganglionectomy.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Ganglia, Sympathetic*
  • Hypoxia
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Superior Cervical Ganglion*
  • Sympathetic Nervous System