Temperature sensitivity modulation through changing the vanadium concentration in a La2MgTiO6:V5+,Cr3+ double perovskite optical thermometer

Dalton Trans. 2021 Jul 21;50(28):9851-9857. doi: 10.1039/d1dt00911g.

Abstract

To fulfil the requirements of operating at low temperature in a harsh environment, the investigation on optical thermometers plays an increasingly important role. In this work, the influence of vanadium concentration on the capability of temperature readout by La2MgTiO6:V5+,Cr3+ luminescent thermometers was investigated for the first time. The presence of V3+ and V5+ was verified by XPS and absorption measurements. In the emission spectra, a blue-green emission region was assigned to both host and V5+ emission. Moreover, a spin-forbidden emission of Cr3+ ions was also detected. Vanadium ions in the +3 oxidation state do not exhibit luminescence, but play a role as a charge compensator. The highest emission intensity was obtained from the sample doped with 0.1% V. Besides, with increasing vanadium concentration, a redshift in the maximum position of the spectrum was observed corresponding to a movement from the greenish blue to yellowish green region in the CIE1931. It was shown that the relative sensitivity (Sr) and the temperature operating range can be easily modified by changing the concentration of vanadium ions. In particular, the outstanding relative sensitivities of 1.71% K-1 (at 187 K) and 1.96% K-1 (at 165 K) obtained from La2MgTiO6:0.1%V5+,Cr3+ and La2MgTiO6:0.05%V5+,Cr3+ demonstrated the enormous potential of this material for thermal sensing application.