Comparison of Fracture Strengths among different Commonly Placed Anterior Esthetic Restorations for Primary Dentition: An in vitro study

J Clin Pediatr Dent. 2021 Jul 1;45(3):171-176. doi: 10.17796/1053-4625-45.3.5.

Abstract

The purpose of this study was to determine and compare the shear force (N) required to fracture or dislodge an all-ceramic zirconia-based crown using different luting cement with those of polycarbonate crown and strip crown for the primary anterior teeth in vitro.

Study design: Four groups of esthetic restoration for primary anterior teeth were tested for fracture strength: 1) Fifteen all-ceramic zirconia-based crowns cemented with glass ionomer cement, 2) Fifteen all-ceramic zirconia-based crowns bonded with a self-adhesive resin cement, 3) Fifteen polycarbonate crowns cemented with a polymer reinforced zinc-oxide eugenol and 4) Fifteen resin strip crowns. All restorations were placed and cemented on reproductions of dies in an independent laboratory at Delhi, India. All samples underwent loading until fracture or dislodgement with the Universal Testing Machine. The force in Newton (N) required to produce failure was recorded for each sample and the type of failures was also noted and characterized. One-way analysis of variance (ANOVA) test and the Tukey and Scheffe's post hoc comparisons were used for statistical analyses.

Results: In this invitro study, results were measured in Newtons (N). Group 1 (410.9±79.5 N) and Group 2 (420.5±57.8 N) had higher fracture strength than Group 3 (330.3±85.6 N) and Group 4 (268.4±28.2 N). These differences were statistically significant at P≤.05 among the sample groups. No significant difference was found between groups 1 and 2 (P = 0.984) nor between groups 3 and 4 (P =0.104). Among type of failures, majority of restoration fractures for zirconia-based crowns and resin strip crowns were due to cohesive failures and polycarbonate crowns had predominantly mixed failures.

Conclusions: Under the limitations of this in vitro study, it could be concluded that all-ceramic zirconia-based crowns attained the highest fracture strength among all restorative samples tested regardless of the type of luting agent employed (P<.01). Cohesive failures were commonly observed in the zirconia crowns and resin strip crowns, whereas polycarbonate crowns revealed predominately mixed failures.

Keywords: Esthetic restorations; Fracture strength; Full coverage crown; Primary teeth.

MeSH terms

  • Crowns
  • Dental Restoration Failure
  • Dental Stress Analysis
  • Esthetics, Dental*
  • Flexural Strength*
  • Humans
  • India
  • Materials Testing
  • Resin Cements
  • Tooth, Deciduous
  • Zirconium

Substances

  • Resin Cements
  • Zirconium