Graphene Oxide-Assisted Covalent Triazine Framework for Boosting Photocatalytic H2 Evolution

Chemistry. 2021 Sep 9;27(51):13059-13066. doi: 10.1002/chem.202101956. Epub 2021 Aug 4.

Abstract

Covalent triazine frameworks (CTFs) with two-dimensional structures have exhibited promising visible-light-induced H2 evolution performance. However, it is still a challenge to improve their activity. Herein, we report π-conjugation-linked CTF-1/GO for boosting photocatalytic H2 evolution. The CTF-1/GO hybrid material was obtained by a facile low-temperature condensation of 1,4-dicyanobenzene in the presence of GO. The results of photocatalytic H2 evolution indicate that the optimum hybrid, CTF-1/GO-3.0, exhibited an H2 evolution rate of 2262.4 μmol ⋅ g-1 ⋅ h-1 under visible light irradiation, which was 9 times that of pure CTF-1. The enhanced photocatalytic performance could be attributed to the fact that GO in CTF-1/GO hybrids not only acts as an electron collector and transporter like a "bridge" to facilitate the separation and transfer of photogenerated charges but also shortens the electron migration path due to its thin sheet layer uniformly distribution over CTF-1. This work could help future development of novel conjugated CTF-based composite materials as high-efficiency photocatalyst for photocatalysis.

Keywords: covalent triazine frameworks; graphene oxides; hydrogen evolution; photocatalysis; water splitting.