An "all-in-one" strategy based on the organic molecule DCN-4CQA for effective NIR-fluorescence-imaging-guided dual phototherapy

J Mater Chem B. 2021 Jul 28;9(29):5785-5793. doi: 10.1039/d1tb00949d.

Abstract

Dual phototherapy combining photodynamic therapy (PDT) and photothermal therapy (PTT) is considered to be a more effective therapeutic method against cancer than single treatment. Therefore, the development of a single material with both near-infrared (NIR)-laser-triggered PDT and PTT abilities is highly desirable but remains a great challenge. A design philosophy for photosensitizers for integrated PDT and PTT treatment has been put forward: (1) a high molar extinction coefficient in the NIR region; (2) suitable LUMO and T1 energy levels to regulate intersystem crossing for effective singlet oxygen (1O2) generation for PDT; and (3) the suppression of fluorescence emission to enhance the process of nonradiative transition with appropriate chemical modifications. Herein, an "all-in-one" functional material, di-cyan substituted 5,12-dibutylquinacridone (DCN-4CQA), for diagnosis and therapy was obtained. DCN-4CQA possesses dual-functional phototherapeutic activity and NIR fluorescence and it was produced via a facile synthesis process from the classic organic photoelectric material quinacridone. We then prepared smart water-soluble nanoparticles (NPs), DCN-4CQA/F127, using Pluronic® 127 (F127) as a drug carrier. The NPs exhibited excellent biocompatibility, robust photostability, NIR fluorescence, a high photothermal conversion efficiency (η = 47.3%), and sufficient 1O2 generation (ΦΔ = 24.3%) under NIR laser irradiation. Remarkably, the DCN-4CQA/F127 NPs significantly inhibited tumor growth in mice subjected to NIR laser irradiation. This study provides a new route for the development of highly efficient, low-cytotoxicity photosensitizers for fluorescence-imaging-guided PTT/PDT.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Survival / drug effects
  • Density Functional Theory
  • Drug Screening Assays, Antitumor
  • Fluorescent Dyes / chemistry
  • Fluorescent Dyes / pharmacology*
  • HeLa Cells
  • Heterocyclic Compounds, 4 or More Rings / chemistry
  • Heterocyclic Compounds, 4 or More Rings / pharmacology*
  • Humans
  • Infrared Rays
  • Mammary Neoplasms, Experimental / drug therapy
  • Mammary Neoplasms, Experimental / pathology
  • Mice
  • Molecular Structure
  • Optical Imaging*
  • Particle Size
  • Photosensitizing Agents / chemical synthesis
  • Photosensitizing Agents / chemistry
  • Photosensitizing Agents / pharmacology*
  • Phototherapy*

Substances

  • Antineoplastic Agents
  • Fluorescent Dyes
  • Heterocyclic Compounds, 4 or More Rings
  • Photosensitizing Agents
  • quinacridone