Evaluation of Renal Oxygenation and Hemodynamics in Patients with Chronic Kidney Disease by Blood Oxygenation Level-dependent Magnetic Resonance Imaging and Intrarenal Doppler Ultrasonography

Nephron. 2021;145(6):653-663. doi: 10.1159/000516637. Epub 2021 Jun 28.

Abstract

Introduction: The basic pathophysiologic derangement of chronic kidney disease (CKD) begins with the loss of nephrons, leading to renal hemodynamic changes, eventually causing a reduced nephron count and renal hypoxia. The purpose of this study was to observe the renal oxygenation and renal hemodynamics of patients with CKD using blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) and intrarenal Doppler ultrasonography (IDU).

Methods: The study enrolled 39 patients with stage 1-4 CKD and 19 healthy volunteers (HVs). Based on their estimated glomerular filtration rate (eGFR), CKD patients were divided into 2 subgroups: a mild renal impairment (MI) group and a moderate to severe renal impairment (MSI) group. We monitored the participants' mean cortical T2* (COT2*) and mean medullary T2* (MET2*) values on BOLD-MRI, and measured the peak systolic velocities (PSVs), end-diastolic velocities (EDVs), renal resistive index (RI), and kidney length by IDU. We also recorded clinical indicators such as age, sex, body mass index (BMI), 24-h urinary protein (24-h Upr), serum creatinine (sCr), blood urea nitrogen (BUN), and eGFR. BOLD-MRI, IDU measurements, and the clinical indicators were compared in CKD patients and HVs by the analysis of variance and Kruskal-Wallis H test. Spearman's correlation was used to assess the relationship between data from BOLD-MRI and IDU and clinical indicators.

Results: The COT2* values were significantly higher than the MET2* values in the HV, MI, and MSI groups. COT2*, MET2*, EDV, PSV, and kidney length gradually decreased in the HV, MI, and MSI groups (all p < 0.05), whereas RI and 24-h Upr gradually increased (both p < 0.05). Spearman correlation analysis showed that COT2* and MET2* were significantly positively correlated with eGFR, PSV, EDV, and kidney length but were significantly negatively correlated with sCr, BUN, and 24-h Upr (all p < 0.05). There was no correlation observed between the COT2* and MET2* and the RI and BMI values.

Conclusions: Renal oxygenation and blood flow velocities were found declined as the CKD stage progressed. The BOLD-MRI and IDU techniques may have clinical value by measuring intrarenal oxygenation and renal blood perfusion to judge the severity of renal damage in patients with CKD.

Keywords: Blood oxygenation level-dependent magnetic resonance imaging; Chronic kidney disease; Magnetic resonance imaging; Renal function; Renal hemodynamics.

MeSH terms

  • Adult
  • Blood Urea Nitrogen
  • Body Mass Index
  • Creatinine / blood
  • Female
  • Glomerular Filtration Rate
  • Humans
  • Kidney / physiopathology*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Organ Size
  • Oxygen / blood*
  • Renal Insufficiency, Chronic / diagnostic imaging
  • Renal Insufficiency, Chronic / physiopathology*
  • Ultrasonography, Doppler / methods*

Substances

  • Creatinine
  • Oxygen