The value of [68Ga]Ga-DOTA-TATE PET/CT in diagnosis and management of suspected pituitary tumors

Eur J Hybrid Imaging. 2021 May 24;5(1):10. doi: 10.1186/s41824-021-00104-3.

Abstract

Background: Gallium 68-tetraazacyclododecane-tetraacetic acid-octreotate ([68Ga]Ga-DOTA-TATE) is a selective somatostatin analogue ligand, which shows increased affinity for somatostatin receptor subtype (SSTR) 2 and has been used routinely for imaging neuroendocrine tumors with PET/CT. We investigated the utility of [68Ga]Ga-DOTA-TATE positron emission tomography/computed tomography (PET/CT) in patients with suspected pituitary pathology. We reviewed imaging for twenty consecutive patients (8 men, 12 women, mean age of 48.2, range 14-78) with suspected pituitary pathology who were referred for [68Ga]Ga-DOTA-TATE PET/CT.

Results: Nine patients presented with recurrent Cushing's syndrome following surgical resection of pituitary adenomas due to recurrent Cushing's disease (seven patients) and ectopic ACTH secreting tumor (2 patients). All seven patients with recurrent Cushing's disease showed positive pituitary [68Ga]Ga-DOTA-TATE uptake while both cases of ectopic hormonal secretion had absented pituitary uptake. In 1 of these 2 patients, [68Ga]Ga-DOTA-TATE was able to localize the source of ectopic ACTH tumor. Six patients presented de novo with Cushing's due to ectopic ACTH secretion; [68Ga]Ga-DOTA-TATE PET/CT was able to localize ectopic tumors in six of eight patients (3 lungs, 2 pancreases, 1 mid-gut) There was high uptake [68Ga]Ga-DOTA-TATE in 3 cases of recurrent central hyperthyroidism (SUVmax 6.6-14.3) and 2 cases of prolactinoma (SUVmax 5.5 and 11.3).

Conclusion: Absent [68Ga]Ga-DOTA-TATE activity in the pituitary fossa is useful in excluding pituitary disease in recurrent Cushing's. Recurrent pituitary thyrotropinomas and prolactinomas showed moderate to high pituitary activity. In addition, in Cushing's syndrome, [68Ga]Ga-DOTA-TATE is useful for detection of ectopic sources of ACTH production, especially where anatomic imaging is negative.