An Efficient Method for Adenovirus Production

J Vis Exp. 2021 Jun 10:(172). doi: 10.3791/61691.

Abstract

Adenoviral transduction has the advantage of a strong and transient induction of the expression of the gene of interest into a broad variety of cell types and organs. However, recombinant adenoviral technology is laborious, time-consuming, and expensive. Here, we present an improved protocol using the pAdEasy system to obtain purified adenoviral particles that can induce a strong green fluorescent protein (GFP) expression in transduced cells. The advantages of this improved method are faster preparation and decreased production cost compared to the original method developed by Bert Vogelstein. The main steps of the adenoviral technology are: (1) the recombination of pAdTrack-GFP with the pAdEasy-1 plasmid in BJ5183 bacteria; (2) the packaging of the adenoviral particles; (3) the amplification of the adenovirus in AD293 cells; (4) the purification of the adenoviral particles from cell lysate and culture medium; and (5) the viral titration and functional testing of the adenovirus. The improvements to the original method consist of (i) the recombination in BJ5183-containing pAdEasy-1 by chemical transformation of bacteria; (ii) the selection of recombinant clones by "negative" and "positive" PCR; (iii) the transfection of AD293 cells using the K2 transfection system for adenoviral packaging; (iv) the precipitation with ammonium sulfate of the viral particles released by AD293 cells in cell culture medium; and (v) the purification of the virus by one-step cesium chloride discontinuous gradient ultracentrifugation. A strong expression of the gene of interest (in this case, GFP) was obtained in different types of transduced cells (such as hepatocytes, endothelial cells) from various sources (human, bovine, murine). Adenoviral-mediated gene transfer represents one of the main tools for developing modern gene therapies.

Publication types

  • Video-Audio Media

MeSH terms

  • Adenoviridae* / genetics
  • Animals
  • Cattle
  • Endothelial Cells
  • Genetic Vectors* / genetics
  • Green Fluorescent Proteins / genetics
  • Humans
  • Mice
  • Transfection

Substances

  • Green Fluorescent Proteins