Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer

Semin Cancer Biol. 2022 Oct:85:69-94. doi: 10.1016/j.semcancer.2021.06.019. Epub 2021 Jun 25.

Abstract

Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.

Keywords: Biomarker; Combination therapy; Human cancer; Hyperactivation; Inhibitors; PI3K/Akt/mTOR signaling; Targeted therapy.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Molecular Targeted Therapy
  • Neoplasms* / drug therapy
  • Neoplasms* / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors
  • Proto-Oncogene Proteins c-akt* / metabolism
  • Signal Transduction
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Proto-Oncogene Proteins c-akt
  • Phosphatidylinositol 3-Kinases
  • Phosphoinositide-3 Kinase Inhibitors
  • TOR Serine-Threonine Kinases
  • MTOR protein, human