Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting

Macromol Biosci. 2021 Sep;21(9):e2100168. doi: 10.1002/mabi.202100168. Epub 2021 Jun 25.

Abstract

Developing biomaterial formulations with specific biochemical characteristics and physical properties suitable for bioprinting of 3D scaffolds is a pivotal challenge in tissue engineering. Therefore, the design of novel bioprintable formulations is a continuously evolving research field. In this work, the authors aim at expanding the library of biomaterial inks by blending two natural biopolymers: pectin and gelatin. Cytocompatible formulations are obtained by combining pectin and gelatin at different ratios and using (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as single crosslinking agent. It is shown that the developed formulations are all suitable for extrusion-based 3D bioprinting. Self-supporting scaffolds with a designed macroporosity and micropores in the bioprinted struts are successfully obtained by combining extrusion-based bioprinting and freeze-drying. The presence of gelatin in these formulations allows for the modulation of porosity, of water uptake and of scaffold stiffness in respect to pure pectin scaffolds. Results demonstrate that these new biomaterial formulations, processed with this specific approach, are promising candidates for the fabrication of tissue-like scaffolds for tissue regeneration.

Keywords: 3D bioprinting; biofabrication; gelatin; pectin; scaffolds; tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocompatible Materials / chemistry
  • Bioprinting*
  • Gelatin / chemistry
  • Hydrogels / chemistry
  • Pectins
  • Printing, Three-Dimensional
  • Tissue Engineering / methods
  • Tissue Scaffolds / chemistry

Substances

  • Biocompatible Materials
  • Hydrogels
  • Pectins
  • Gelatin