S2L-PSIBLAST: a supervised two-layer search framework based on PSI-BLAST for protein remote homology detection

Bioinformatics. 2021 Dec 7;37(23):4321-4327. doi: 10.1093/bioinformatics/btab472.

Abstract

Motivation: Protein remote homology detection is a challenging task for the studies of protein evolutionary relationships. PSI-BLAST is an important and fundamental search method for detecting homology proteins. Although many improved versions of PSI-BLAST have been proposed, their performance is limited by the search processes of PSI-BLAST.

Results: For further improving the performance of PSI-BLAST for protein remote homology detection, a supervised two-layer search framework based on PSI-BLAST (S2L-PSIBLAST) is proposed. S2L-PSIBLAST consists of a two-level search: the first-level search provides high-quality search results by using SMI-BLAST framework and double-link strategy to filter the non-homology protein sequences, the second-level search detects more homology proteins by profile-link similarity, and more accurate ranking lists for those detected protein sequences are obtained by learning to rank strategy. Experimental results on the updated version of Structural Classification of Proteins-extended benchmark dataset show that S2L-PSIBLAST not only obviously improves the performance of PSI-BLAST, but also achieves better performance on two improved versions of PSI-BLAST: DELTA-BLAST and PSI-BLASTexB.

Availability and implementation: http://bliulab.net/S2L-PSIBLAST.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Amino Acid Sequence
  • Proteins* / chemistry
  • Sequence Alignment

Substances

  • Proteins