In Vivo Tissue Implantation Model of In Vivo Tissue Implantation Model of Lidocaine (LCH)-Encapsulated Dextran (DEX)/Glycol (GLY) Nanoparticles Delivery for Pain Management

J Biomed Nanotechnol. 2021 Jun 1;17(6):1208-1216. doi: 10.1166/jbn.2021.3040.

Abstract

Lidocaine-loaded nanoparticles are versatile nanomaterials that may be used in pain treatment due to their wound healing properties. The current study describes a wound dressing formulation focused on lidocaine-loaded dextran/ethylene glycol nanoparticles (an anesthetic drug). The lidocaine-loaded dextran/ethylene glycol membranes were fabricated using lidocaine solutions inside the dextran/ethylene glycol medium. The influence of various experimental conditions on dextran/ethylene glycol nanoparticle formations were examined. The sizes of dextran/ethylene glycol and lidocaine-loaded dextran/glycol nanoparticles were examined through the HR-SEM. Moreover, the efficacy antibacterial activity of dextran/glycol and lidocaine-loaded dextran/ethylene glycol nanoparticles was evaluated against the microorganisms grampositive and negative. Furthermore, we observed the In Vivo wound healing of wounds in skin using a mice model over a 16 days period. In this difference to the wounds of untreated mouse, quick healing was observed in the lidocaine-loaded dextran/glycol nanoparticles-treated wounds with fewer injury. These results specify that lidocaine-loaded dextran/ethylene glycol nanoparticles-based dressing material could be a ground-breaking nanomaterial having wound repair and implantations potential required for wound injury in pain management, which was proven using an animal model.

MeSH terms

  • Animals
  • Dextrans
  • Glycols
  • Lidocaine*
  • Mice
  • Nanoparticles*
  • Pain Management

Substances

  • Dextrans
  • Glycols
  • Lidocaine