Distinguishment of Glycan Isomers by Trapped Ion Mobility Spectrometry

Anal Chem. 2021 Jul 6;93(26):9209-9217. doi: 10.1021/acs.analchem.1c01461. Epub 2021 Jun 24.

Abstract

The in-depth study of glycan has drawn large research interests since it is one of the main biopolymers on the earth with a variety of biological functions. However, the distinguishment of glycans is still difficult due to the similarity of the monosaccharide building block, the anomer, and the linkage of glycosidic bonds. In this study, four novel and representative copper-bound diastereoisomeric complex ions were simultaneously detected in a single measurement by trapped ion mobility mass spectrometry, including mononuclear copper-bound dimeric ions [(Cu2+)(A)(l-Ser)-H]+ and [(Cu2+)(A)(l-His)-H]+, the mononuclear copper-bound trimeric ion [(Cu2+)(A)(l-Ser)(l-His)-H]+, and the binuclear copper-bound tetrameric ion [(Cu2+)2(A)(l-Ser)2(l-His)-3H]+ (where A denotes an oligosaccharide, and l-Ser and l-His denote l-serine and l-histidine, respectively). By combining the collision cross sections of complex ions, 23 oligosaccharide isomers were successfully distinguished including two pairs of sialylated glycan linkage isomers. In addition, due to the unique dissociation pathways of the trimeric ion, both the relative and absolute quantification of the individual isomer in the mixture could be determined using a mass spectrometry-based kinetic method. Finally, the method established above was successfully applied to the identification and quantification of glycan isomers in dairy beverages and juice. The method in the present study was sensitive to the fine difference of glycan isomers and might have wide applicability in glycoscience.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ion Mobility Spectrometry*
  • Ions
  • Isomerism
  • Mass Spectrometry
  • Polysaccharides*

Substances

  • Ions
  • Polysaccharides