Matriptase activation of Gq drives epithelial disruption and inflammation via RSK and DUOX

Elife. 2021 Jun 24:10:e66596. doi: 10.7554/eLife.66596.

Abstract

Epithelial tissues are primed to respond to insults by activating epithelial cell motility and rapid inflammation. Such responses are also elicited upon overexpression of the membrane-bound protease, Matriptase, or mutation of its inhibitor, Hai1. Unrestricted Matriptase activity also predisposes to carcinoma. How Matriptase leads to these cellular outcomes is unknown. We demonstrate that zebrafish hai1a mutants show increased H2O2, NfκB signalling, and IP3R -mediated calcium flashes, and that these promote inflammation, but do not generate epithelial cell motility. In contrast, inhibition of the Gq subunit in hai1a mutants rescues both the inflammation and epithelial phenotypes, with the latter recapitulated by the DAG analogue, PMA. We demonstrate that hai1a has elevated MAPK pathway activity, inhibition of which rescues the epidermal defects. Finally, we identify RSK kinases as MAPK targets disrupting adherens junctions in hai1a mutants. Our work maps novel signalling cascades mediating the potent effects of Matriptase on epithelia, with implications for tissue damage response and carcinoma progression.

Keywords: Gq; Hai1; Matriptase; Par2; RSK; cell biology; genetics; genomics; inflammation; zebrafish.

Plain language summary

Cancer occurs when normal processes in the cell become corrupted or unregulated. Many proteins can contribute, including one enzyme called Matriptase that cuts other proteins at specific sites. Matriptase activity is tightly controlled by a protein called Hai1. In mice and zebrafish, when Hai1 cannot adequately control Matriptase activity, invasive cancers with severe inflammation develop. However, it is unclear how unregulated Matriptase leads to both inflammation and cancer invasion. One outcome of Matriptase activity is removal of proteins called Cadherins from the cell surface. These proteins have a role in cell adhesion: they act like glue to stick cells together. Without them, cells can dissociate from a tissue and move away, a critical step in cancer cells invading other organs. However, it is unknown exactly how Matriptase triggers the removal of Cadherins from the cell surface to promote invasion. Previous work has shown that Matriptase switches on a receptor called Proteinase-activated receptor 2, or Par2 for short, which is known to activate many enzymes, including one called phospholipase C. When activated, this enzyme releases two signals into the cell: a sugar called inositol triphosphate, IP3; and a lipid or fat called diacylglycerol, DAG. It is possible that these two signals have a role to play in how Matriptase removes Cadherins from the cell surface. To find out, Ma et al. mapped the effects of Matriptase in zebrafish lacking the Hai1 protein. This revealed that Matriptase increases IP3 and DAG levels, which initiate both inflammation and invasion. IP3 promotes inflammation by switching on pro-inflammatory signals inside the cell such as the chemical hydrogen peroxide. At the same time, DAG promotes cell invasion by activating a well-known cancer signalling pathway called MAPK. This pathway activates a protein called RSK. Ma et al. show that this protein is required to remove Cadherins from the surface of cells, thus connecting Matriptase’s activation of phospholipase C with its role in disrupting cell adhesion. An increase in the ratio of Matriptase to HAI-1 (the human equivalent of Hai1) is present in many cancers. For this reason, the signal cascades described by Ma et al. may be of interest in developing treatments for these cancers. Understanding how these signals work together could lead to more direct targeted anti-cancer approaches in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Calcium / metabolism
  • Calcium Signaling
  • DNA / genetics
  • Embryo, Nonmammalian
  • Enzyme Activation
  • GTP-Binding Protein alpha Subunits, Gq-G11 / genetics
  • GTP-Binding Protein alpha Subunits, Gq-G11 / metabolism*
  • Gene Expression Regulation, Enzymologic / drug effects
  • Hydrogen Peroxide
  • Inflammation / metabolism
  • Mutation
  • Neutrophils / physiology
  • Peptides, Cyclic
  • Polymerase Chain Reaction
  • RNA / genetics
  • Serine Endopeptidases / genetics
  • Serine Endopeptidases / metabolism*
  • Zebrafish

Substances

  • Peptides, Cyclic
  • YM-254890
  • RNA
  • DNA
  • Hydrogen Peroxide
  • Serine Endopeptidases
  • matriptase
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • Calcium

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.