Single-atom cobalt-fused biomolecule-derived nitrogen-doped carbon nanosheets for selective oxidation reactions

Phys Chem Chem Phys. 2021 Jul 7;23(26):14276-14283. doi: 10.1039/d1cp01113h.

Abstract

Non-noble metal single-atom catalysts hold great promise in selective oxidation reactions, although the progress is still unsatisfactory because of the synthesis challenge and the lack of mechanistic interpretations. Herein, we develop a biomolecule-based strategy to synthesize isolated Co single atom site catalysts by one-step pyrolysis of guanosine and Co precursors. Due to the abundant hydrogen bonding and π-π interaction of guanosine, the as-synthesized Co-N-C catalysts present a hierarchical porous two-dimensional (2D) nanostructure with an ultrahigh specific surface area, large pore volume, and high density of cobalt single atoms. Aberration-corrected electron microscopy and X-ray photoelectron spectroscopy reveal that Co species are present as isolated single sites and stabilized by nitrogen-doped carbon nanosheets. These characteristics make Co-GS-900 suitable as an efficient catalyst for selective oxidation of aromatic alkanes. For oxidation of ethylbenzene, Co-GS-900 exhibits a superior performance f with 91% conversion and 98% selectivity of acetophenone.