Catalytic synthesis of nanodiamond based on CDC principle: influence of different catalysts on types and sizes

Nanotechnology. 2021 Jul 7;32(39). doi: 10.1088/1361-6528/ac0d7f.

Abstract

Recently, we have successfully realized the catalytic synthesis of nanodiamond (ND) by embedding the Fe catalyst into carbide under high stress, followed by chlorine-etching at atmospheric pressure. In this work, we selected Fe, Co and Ni as the catalyst, and TiC as the precursor, aiming at investigating the influence of the catalyst type on the synthesis of NDs. The results have shown that all the three catalysts can catalyze the synthesis of ND structure, where various types of NDs have been observed. Furthermore, the crystal type and plasticity of the catalyst may have an important influence on the type and size of the resultant ND. In the case of Fe and Ni as the catalyst, both of which have a face centered cubic crystal structure, the types of NDs obtained are mainly C-type and R-type but only a few H-type. However, when the Co with a close-packed hexagonal crystal structure is used as the catalyst, more H-type NDs can be catalytically synthesized. Moreover, more small-sized NDs have been catalytically synthesized by Co, which may be ascribed to the worse plasticity of Co by comparison to Fe and Ni.

Keywords: carbide; catalyst; chlorine-etching; high-stress embedding; nanodiamond.