Treating two pandemics for the price of one: Chronic and infectious disease impacts of the built and natural environment

Sustain Cities Soc. 2021 Oct:73:103089. doi: 10.1016/j.scs.2021.103089. Epub 2021 Jun 12.

Abstract

Compact walkable environments with greenspace support physical activity and reduce the risk for depression and several obesity-related chronic diseases, including diabetes and heart disease. Recent evidence confirms that these chronic diseases increase the severity of COVID-19 infection and mortality risk. Conversely, denser transit supportive environments may increase risk of exposure to COVID-19 suggesting the potential for contrasting chronic versus infectious disease impacts of community design. A handful of recent studies have examined links between density and COVID-19 mortality rates reporting conflicting results. Population density has been used as a surrogate of urban form to capture the degree of walkability and public transit versus private vehicle travel demand. The current study employs a broader range of built environment features (density, design, and destination accessibility) and assesses how chronic disease mediates the relationship between built and natural environment and COVID-19 mortality. Negative and significant relationships are observed between built and natural environment features and COVID-19 mortality when accounting for the mediating effect of chronic disease. Findings underscore the importance of chronic disease when assessing relationships between COVID-19 mortality and community design. Based on a rigorous simulation-assisted random parameter path analysis framework, we further find that the relationships between COVID-19 mortality, obesity, and key correlates exhibit significant heterogeneity. Ignoring this heterogeneity in highly aggregate spatial data can lead to incorrect conclusions with regards to the relationship between built environment and COVID-19 transmission. Results presented here suggest that creating walkable environments with greenspace is associated with reduced risk of chronic disease and/or COVID-19 infection and mortality.

Keywords: Built environment; COVID-19 mortality; Chronic disease; Natural environment; Path analysis; Random parameters; Simulation; Transportation.