Dynamically Crosslinked Dry Ion-Conducting Elastomers for Soft Iontronics

Adv Mater. 2021 Aug;33(31):e2101396. doi: 10.1002/adma.202101396. Epub 2021 Jun 21.

Abstract

Soft ionic conductors show great promise in multifunctional iontronic devices, but currently utilized gel materials suffer from liquid leakage or evaporation issues. Here, a dry ion-conducting elastomer with dynamic crosslinking structures is reported. The dynamic crosslinking structures endow it with combined advantageous properties simultaneously, including high ionic conductivity (2.04 × 10-4 S cm-1 at 25 °C), self-healing capability (96% healing efficiency), stretchability (563%), and transparency (78%). With this ionic conductor as the electrode, two soft iontronic devices (electroluminescent devices and triboelectric nanogenerator tactile sensors) are realized with entirely self-healing and stretchable capabilities. Due to the absence of liquid materials, the dry ion-conducting elastomer shows wide operational temperature range, and the iontronic devices achieve excellent stability. These findings provide a promising strategy to achieve highly conductive and multifunctional soft dry ionic conductors, and demonstrate their great potential in soft iontronics or electronics.

Keywords: electroluminescent devices; ion-conducting elastomers; iontronics; self-healing; triboelectric nanogenerators.