High speed external cavity diode laser concept based on a resonantly driven MEMS scanner for the mid-infrared region

Appl Opt. 2021 May 20;60(15):C92-C97. doi: 10.1364/AO.420041.

Abstract

The rapid detection of trace gases is of great relevance for various spectroscopy applications. In this regard, the technology of external cavity diode lasers (ECDLs) has firmly established itself due to its excellent properties. Outside of the laboratory environment, however, these still have some restrictions, especially with regard to high acquisition rates for sensitive spectroscopy applications and mode-hop-free tuning. In this article, we present our innovative GaSb-based ECDL concept, in which a resonantly driven microelectromechanical system actuator is used. With this, a defined frequency range can be tuned extremely fast and without mode hops. Results of the characterization and its use for the rapid detection of trace gases are presented.