Point Defect Engineering: Co-Doping Synergy Realizing Superior Performance in n-Type Bi2 Te3 Thermoelectric Materials

Small. 2021 Jul;17(29):e2101328. doi: 10.1002/smll.202101328. Epub 2021 Jun 17.

Abstract

Bi2 Te3 has attracted great attention because of its excellent thermoelectric (TE) performance around room temperature. However, the TE property of the n-type Bi2 Te3 is still relatively low compared to the p-type counterpart, which seriously hinders its commercial application with a combination of the n-type and p-type materials. Herein, an effective process of Cl and W co-doping is employed into the n-type Bi2 Te3 materials to enhance its TE properties. The Bi1.996 W0.004 Te2.476 Cl0.024 Se0.5 sample achieves a peak and average ZT over 1.3 and 1.2, respectively, at temperature range of 300-575 K. A 24-leg TE module of this n-type material and a home-made p-type Bi2 Te3 sample can produce a high efficiency over 6% at a temperature gradient of 235 K, which possesses a 71% improvement compared with a commercial Bi2 Te3 module. This high performance is ascribed to the effect of the Cl and W doping. This co-doping not only significantly increases the Grüneisen parameter but also successfully induces interstitial atoms in the van der Waals gap, which lead to a low lattice thermal conductivity (κl ) of 0.31W m-1 K-1 and a boosted charge transport. This finding represents an important step to promote the development of the n-type Bi2 Te3 materials.

Keywords: co-doping; interstitial atoms; lattice thermal conductivity; n-type Bi 2Te 3; thermoelectric materials.