Frequency-Swept Ultra-Wideline Magic-Angle Spinning NMR Spectroscopy

J Phys Chem A. 2021 Jul 1;125(25):5643-5649. doi: 10.1021/acs.jpca.1c02958. Epub 2021 Jun 17.

Abstract

Recent years have witnessed the development of solid-state NMR techniques that allow the direct investigation of extremely wide inhomogeneously broadened resonance lines. To date, this typically involves the application of frequency sweeps as offered by wideband uniform rate smooth truncation (WURST) pulses. While the effects of such advanced irradiation schemes on static samples are well understood, the interference between the varying carrier frequency and the time-dependent evolution of the spin system under magic-angle spinning (MAS) conditions is more complex. Herein, we introduce the well-known WURST-Carr-Purcell-Meiboom-Gill (WCPMG) pulse sequence for spinning samples. Using numerical spin-density matrix analysis, an ideal design based on fast frequency sweeps and high truncation of the incorporated WURST pulses is presented that enables uniform excitation/refocusing under MAS conditions with low-to-moderate radio-frequency power requirements. This permits the acquisition of ultra-wideline MAS NMR lines exceeding 500 kHz with chemical shift resolution in a single transmitter step.