Toward the identification of molecular markers associated with phytochemical traits in the Iranian sumac (Rhus coriaria L.) population

Food Sci Nutr. 2021 May 3;9(6):3142-3154. doi: 10.1002/fsn3.2273. eCollection 2021 Jun.

Abstract

Sumac (Rhus coriaria L.) is one of the important forest species dispersed in the northwest of Iran. It is one of the important spice in Iran and the Middle East because of active components containing organic acids, phenolic acids, flavonoids, anthocyanins, tannins and terpenoids. This study aimed to investigate population structure and linkage disequilibrium (LD) extent within Rhus coriaria L. genotypes using ISSR markers and identify molecular markers associated with phytochemical traits using association analysis. In the molecular part of the experiment, the genetic diversity of 75 sumac genotypes from five different areas of northwest Iran was assessed by 18 ISSR primers. In the phenotypic assessment, the fruits of the sumac genotypes were analyzed using HPLC-LC/MSMS for determining phytochemical components including maleic acid, ellagic acid, maleic acid hexoside, gallic acid, coumaric acid, quercetin, caftaric acid, and linoleic acid. The phenotypic data analysis revealed the great phenotypic diversity among and within Iranian sumac populations for the studied phytochemical traits. The studied sumac genotypes were divided into two subpopulations based on molecular marker-based structure analysis. A significant level of LD was observed in 11.64% of the ISSR marker pairs (p < .05). The mixed linear model procedure showed that 12 loci had a significant association with investigated traits. The ISSR loci identified in this study can be potentially used in marker-assisted selection in sumac breeding programs.

Keywords: Association analysis; ISSR; Rhus coriaria; forest tree breeding; linkage disequilibrium; phytochemical component.