Sorption- and diffusion-induced isotopic fractionation in chloroethenes

Sci Total Environ. 2021 Sep 20:788:147826. doi: 10.1016/j.scitotenv.2021.147826. Epub 2021 May 20.

Abstract

Isotopic fractionation of groundwater contaminants can occur due to degradation, diffusion and sorption. Of these, only degradation has been extensively explored, yet diffusive isotopic fractionation (DIF) and sorptive isotopic fractionation (SIF) can have significant effects on the isotopic enrichment of groundwater contaminants. Understanding how to mathematically describe and model these processes is vital to the correct interpretation of compound-specific isotope analysis (CSIA) data in the field. Here, models for these physical fractionation processes are developed and described, including the definition of a sorption enrichment factor. These models are then implemented numerically using inverse and finite-element methods to investigate two scenarios, diffusion-sorption and diffusion-sorption-advection, that have been measured in the laboratory. Concentration, δ37Cl, and δ2H data from cis-dichloroethene (cDCE) and trichloroethene (TCE) are used as inputs to the models. Unknown transport parameters including diffusive fractionation exponents are determined from an inverse modelling approach. DIF is shown to have a stronger influence on chlorine isotopologues than on hydrogen isotopologues. For both cDCE and TCE, the sorption enrichment factor of chlorine is found to be negative while that of hydrogen is positive. The presented approach and results provide novel tools and insight into DIF and SIF and underline that these processes should be taken into account when using CSIA to assess contaminant fate.

Keywords: CSIA; Chlorohydrocarbons; Diffusion; Inverse modelling; Isotopic fractionation; Sorption.