Supramolecular Singlet Fission of Pentacene Dimers within Polyaromatic Capsules

J Am Chem Soc. 2021 Jun 16. doi: 10.1021/jacs.0c13172. Online ahead of print.

Abstract

We herein report a new set of supramolecular nanotools for the generation and modulation of singlet fission (SF) of noncovalent/covalent pentacene dimers. Two molecules of a pentacene monomer with bulky substituents are facilely encapsulated by a polyaromatic capsule, composed of naphthalene-based bent amphiphiles, in water. The encapsulated noncovalent dimer converts to otherwise undetectable triplet pairs and an individual triplet in high quantum yields (179% and 53%, respectively) even under high dilution conditions. Within the capsule, a covalently linked pentacene dimer with bulky groups generates two triplet pair intermediates in parallel, which are hardly distinguished in bulk solution, in excellent total quantum yield (196%). The yield of the individual triplet is enhanced by 1.6 times upon encapsulation. For both types of pentacene dimers, the SF features can be readily tuned by changing the polyaromatic panels of the capsule (i.e., anthracene and phenanthrene).