Dysprosium(III) compounds assembled via a versatile ligand incorporating salicylic hydrazide and 8-hydroxyquinolin units: syntheses, structures and magnetic properties

Dalton Trans. 2021 Jul 13;50(27):9457-9466. doi: 10.1039/d1dt01525g.

Abstract

Assembly of dysprosium(iii) salts with a multidentate ligand H3L ((2-hydroxy)-N'-((8-hydroxyquinolin-2-yl)methylene)-benzohydrazide) affords a variety of products with different topological structures, namely [Dy(H2L)(HL)]·CH3OH (1), [Dy2(HL)2(C6H5COO)2(CH3OH)2]·3CH3OH (2), [Dy2(HL)2(NO3)2(DMF)4]·4DMF (3), [Dy4L4(CH3OH)4]·2CH3OH·4H2O (4) and ([Dy4(HL)4(C6H5COO)4(CH3OH)(H2O)]·2CH3OH·CH3CN·H2O)n (5). The versatile and flexible coordination modes of phenoxo groups from salicylic hydrazide prove to be a key factor in the assembly of corresponding structures depending upon the reaction conditions. It is noteworthy that ligands HL2- act as a long-distance link and further connect the Dy2 fragments into an infinite 1D chain due to the conformational flexibility resulting from the rotatable C-C bond in 5. Furthermore, the magnetic measurements were performed on all complexes. The dc magnetic susceptibility data evidence distinct magnetic coupling interactions in the dinuclear complexes 2 (antiferromagnetic) and 3 (ferromagnetic) despite their similar structures, and only complex 3 shows slow relaxation behavior of magnetization. Ab initio calculations and electrostatic potential analysis on complexes 2, 3, and three other complexes (6, 7, 8) incorporating different kinds of ligands reveal the important interrelationship of magnetic anisotropy, magnetic coupling interactions and SMM properties.