Determination of the "Privileged Structure" of 8-Hydroxyquinoline

Chemphyschem. 2021 Aug 18;22(16):1692-1697. doi: 10.1002/cphc.202100384. Epub 2021 Jul 7.

Abstract

An accurate semi-experimental equilibrium structure of 8-hydroxyquinoline (8-HQ) has been determined combining experiment and theory. The cm-wave rotational spectrum of 8-HQ was recorded in a pulsed supersonic jet using broadband dual-path reflection and narrowband Fabry-Perot-type resonator Fourier-transform microwave spectrometers. Accurate rotational and quartic centrifugal distortion constants and 14 N quadrupole coupling constants are determined. Rotational constants of all 13 C, 18 O and 15 N singly substituted isotopologues in natural abundance and those of a chemically synthesized OD isotopologue were used to obtain geometric parameters for all the heavy atoms and the hydroxyl hydrogen from a number of structure determination models. Theoretical approaches allowed for the determination of a semi-experimental equilibrium structure, reSE in which computed rovibrational and electronic corrections were utilized to convert vibrational ground state constants into equilibrium constants. Despite the molecule having only a horizontal plane of symmetry and possessing 11 individual heavy atoms, microwave spectroscopy has allowed for a reliable and accurate structure determination. A mass dependent, rm2 structure was determined and proved to be equally reliable by comparison with the B3LYP-D3(BJ)/aVTZ equilibrium structure.

Keywords: 8-hydroxyquinoline; density functional calculations; microwave spectroscopy; molecular structure; privileged structure.