Forage stoichiometry predicts the home range size of a small terrestrial herbivore

Oecologia. 2021 Oct;197(2):327-338. doi: 10.1007/s00442-021-04965-0. Epub 2021 Jun 15.

Abstract

Home range size of consumers varies with food quality, but the many ways of defining food quality hamper comparisons across studies. Ecological stoichiometry studies the elemental balance of ecological processes and offers a uniquely quantitative, transferrable way to assess food quality using elemental ratios, e.g., carbon (C):nitrogen (N). Here, we test whether snowshoe hares (Lepus americanus) vary their home range size in response to spatial patterns of C:N, C:phosphorus (P), and N:P ratios of two preferred boreal forage species, lowbush blueberry (Vaccinium angustifolium) and red maple (Acer rubrum), in summer months. Boreal forests are N- and P-limited ecosystems and access to N- and P-rich forage is paramount to snowshoe hares' survival. Accordingly, we consider forage with higher C content relative to N and P to be lower quality than forage with lower relative C content. We combine elemental distribution models with summer home range size estimates to test the hypothesis that home range size will be smaller in areas with access to high, homogeneous food quality compared to areas of low, heterogeneous food quality. Our results show snowshoe hares had smaller home ranges in areas where lowbush blueberry foliage quality was higher or more spatially homogenous than in areas of lower, more heterogeneous food quality. By responding to spatial patterns of food quality, consumers may influence community and ecosystem processes by, for example, varying nutrient recycling rates. Our reductionist biogeochemical approach to viewing resources leads us to holistic insights into consumer spatial ecology.

Keywords: Boreal forest; Ecological stoichiometry; Resource quality; Snowshoe hare; Space use.

MeSH terms

  • Animals
  • Ecosystem*
  • Hares*
  • Herbivory
  • Homing Behavior
  • Seasons