Possible novel features of synaptic regulation during long-term facilitation in Aplysia

Learn Mem. 2021 Jun 15;28(7):218-227. doi: 10.1101/lm.053124.120. Print 2021 Jul.

Abstract

Most studies of molecular mechanisms of synaptic plasticity have focused on the sequence of changes either at individual synapses or in the cell nucleus. However, studies of long-term facilitation at Aplysia sensory neuron-motor neuron synapses in isolated cell culture suggest two additional features of facilitation. First, that there is also regulation of the number of synaptic contacts between two neurons, which may occur at the level of cell pair-specific branch points in the neuronal arbor. Branch points contain many molecules that are involved in protein synthesis-dependent long-term facilitation including neurotrophins and the RNA binding protein CPEB. Second, the regulation involves homeostatic feedback and tends to keep the total number of contacts between two neurons at a fairly constant level both at rest and following facilitation. That raises the question of how facilitation and homeostasis can coexist. A possible answer is suggested by the findings that they both involve spontaneous transmission and postsynaptic Ca2+, which can have bidirectional effects similar to LTP and LTD in hippocampus. In addition, long-term facilitation can involve a change in the set point of homeostasis, which could be encoded by plasticity molecules such as CPEB and/or PKM. A computational model based on these ideas can qualitatively simulate the basic features of both facilitation and homeostasis of the number of contacts.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aplysia / physiology*
  • Homeostasis / physiology*
  • Models, Biological
  • Neuronal Plasticity / physiology*
  • Neurons / physiology*