Long non-coding RNA RP11-283G6.5 confines breast cancer development through modulating miR-188-3p/TMED3/Wnt/β-catenin signalling

RNA Biol. 2021 Oct 15;18(sup1):287-302. doi: 10.1080/15476286.2021.1941608. Epub 2021 Jul 27.

Abstract

The contributions of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) to breast cancer are critical areas of investigation. In this study, we identified a novel lncRNA RP11-283G6.5 which was lowly expressed in breast cancer and whose low expression was correlated with poor overall survival and disease-free survival of breast cancer patients. Functional experiments revealed that ectopic expression of RP11-283G6.5 confined breast cancer cellular growth, migration, and invasion, and promoted cellular apoptosis. Conversely, RP11-283G6.5 silencing facilitated breast cancer cellular growth, migration, and invasion, and repressed cellular apoptosis. Moreover, RP11-283G6.5 was found to confine breast cancer tumour growth and metastasis in vivo. Mechanistically, RP11-283G6.5 competitively bound to ILF3, reduced the binding of ILF3to primary miR-188 (pri-miR-188), abolished the suppressive effect of ILF3 on pri-miR-188 processing, and therefore promoted pri-miR-188 processing, leading to the reduction of pri-miR-188 and the upregulation of mature miR-188-3p. The expression of RP11-283G6.5 was significantly positively correlated with that of miR-188-3p in breast cancer tissues. Through increasing miR-188-3p, RP11-283G6.5 decreased TMED3, a target of miR-188-3p. RP11-283G6.5 further suppressed Wnt/β-catenin signalling via decreasing TMED3. Rescue assays revealed that inhibition of miR-188-3p, overexpression of TMED3 or blocking Wnt/β-catenin signalling all attenuated the roles of RP11-283G6.5 in breast cancer. Collectively, these findings demonstrated that RP11-283G6.5 is a tumour suppressive lncRNA in breast cancer via modulating miR-188-3p/TMED3/Wnt/β-catenin signalling. This study indicated that RP11-283G6.5 might be a promising prognostic biomarker and therapeutic target for breast cancer.

Keywords: Breast cancer; WNT/β-catenin signalling; long noncoding RNA; microRNA biogenesis; microRNA-188.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Proliferation
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics*
  • Middle Aged
  • Prognosis
  • RNA, Long Noncoding / genetics*
  • Survival Rate
  • Tumor Cells, Cultured
  • Vesicular Transport Proteins / genetics
  • Vesicular Transport Proteins / metabolism*
  • Wnt1 Protein / genetics
  • Wnt1 Protein / metabolism*
  • Xenograft Model Antitumor Assays
  • beta Catenin / genetics
  • beta Catenin / metabolism*

Substances

  • Biomarkers, Tumor
  • CTNNB1 protein, human
  • MIRN188 microRNA, human
  • MicroRNAs
  • RNA, Long Noncoding
  • TMED3 protein, human
  • Vesicular Transport Proteins
  • WNT1 protein, human
  • Wnt1 Protein
  • beta Catenin

Grants and funding

This work was supported by the Natural Science Foundation of Anhui Province (2008085MH295).