Reduced TMS-evoked fast oscillations in the motor cortex predict the severity of positive symptoms in first-episode psychosis

Prog Neuropsychopharmacol Biol Psychiatry. 2021 Dec 20:111:110387. doi: 10.1016/j.pnpbp.2021.110387. Epub 2021 Jun 12.

Abstract

Accumulating evidence points to neurophysiological abnormalities of the motor cortex in Schizophrenia (SCZ). However, whether these abnormalities represent a core biological feature of psychosis rather than a superimposed neurodegenerative process is yet to be defined, as it is their putative relationship with clinical symptoms. in this study, we used Transcranial Magnetic Stimulation coupled with electroencephalography (TMS-EEG) to probe the intrinsic oscillatory properties of motor (Brodmann Area 4, BA4) and non-motor (posterior parietal, BA7) cortical areas in twenty-three first-episode psychosis (FEP) patients and thirteen age and gender-matched healthy comparison (HC) subjects. Patients underwent clinical evaluation at baseline and six-months after the TMS-EEG session. We found that FEP patients had reduced EEG activity evoked by TMS of the motor cortex in the beta-2 (25-34 Hz) frequency band in a cluster of electrodes overlying BA4, relative to HC participants. Beta-2 deficits in the TMS-evoked EEG response correlated with worse positive psychotic symptoms at baseline and also predicted positive symptoms severity at six-month follow-up assessments. Altogether, these findings indicate that reduced TMS-evoked fast oscillatory activity in the motor cortex is an early neural abnormality that: 1) is present at illness onset; 2) may represent a state marker of psychosis; and 3) could play a role in the development of new tools of outcome prediction in psychotic patients.

Keywords: First episode psychosis; Motor cortex; Neurophysiology; Outcome prediction; Schizophrenia; TMS-EEG.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Electroencephalography
  • Female
  • Humans
  • Male
  • Motor Cortex / physiopathology*
  • Psychotic Disorders / diagnosis*
  • Transcranial Magnetic Stimulation*