A novel external beam radiotherapy method for cervical cancer patients using virtual straight or bending boost areas; an in-silico feasibility study

Radiat Oncol. 2021 Jun 14;16(1):110. doi: 10.1186/s13014-021-01838-x.

Abstract

Aim: To investigate the potential role of a novel spatially fractionated radiation therapy (SFRT) method where heterogeneous dose patterns are created in target areas with virtual rods, straight or curving, of variable position, diameter, separation and alignment personalised to a patient's anatomy. The images chosen for this study were CT scans acquired for the external beam part of radiotherapy.

Methods: Ten patients with locally advanced cervical cancer were retrospectively investigated with SFRT. The dose prescription was 30 Gy in 5 fractions to 90% target volume coverage. Peak-and-valley (SFRT_1) and peak-only (SFRT_2) strategies were applied to generate the heterogeneous dose distributions. The planning objectives for the target (CTV) were D90% ≥ 30 Gy, V45Gy ≥ 50-55% and V60Gy ≥ 30%. The planning objectives for the organs at risk (OAR) were: D2cm3 ≤ 23.75 Gy, 17.0 Gy, 19.5 Gy, 17.0 Gy for the bladder, rectum, sigmoid and bowel, respectively. The plan comparison was performed employing the quantitative analysis of the dose-volume histograms.

Results: The D2cm3 was 22.4 ± 2.0 (22.6 ± 2.1) and 13.9 ± 2.9 (13.2 ± 3.0) for the bladder and the rectum for SFRT_1 (SFRT_2). The results for the sigmoid and the bowel were 2.6 ± 3.1 (2.8 ± 3.0) and 9.1 ± 5.9 (9.7 ± 7.3), respectively. The hotspots in the target volume were V45Gy = 43.1 ± 7.5% (56.6 ± 5.6%) and V60Gy = 15.4 ± 5.6% (26.8 ± 6.6%) for SFRT_1 (SFRT_2). To account for potential uncertainties in the positioning, the dose prescription could be escalated to D90% = 33-35 Gy to the CTV without compromising any constraints to the OARs CONCLUSION: In this dosimetric study, the proposed novel planning technique for boosting the cervix uteri was associated with high-quality plans, respecting constraints for the organs at risk and approaching the level of dose heterogeneity achieved with routine brachytherapy. Based on a sample of 10 patients, the results are promising and might lead to a phase I clinical trial.

Keywords: Cervix uteri cancer; RapidArc; Spatially fractionated radiation therapy; VMAT; Virtual brachytherapy.

MeSH terms

  • Brachytherapy / methods*
  • Computer Simulation*
  • Feasibility Studies
  • Female
  • Humans
  • Organs at Risk / radiation effects*
  • Prognosis
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Retrospective Studies
  • Uterine Cervical Neoplasms / pathology
  • Uterine Cervical Neoplasms / radiotherapy*