HIV Reverse Transcriptase Pre-Steady-State Kinetic Analysis of Chain Terminators and Translocation Inhibitors Reveals Interactions between Magnesium and Nucleotide 3'-OH

ACS Omega. 2021 May 25;6(22):14621-14628. doi: 10.1021/acsomega.1c01742. eCollection 2021 Jun 8.

Abstract

Deoxythymidine triphosphate analogues with various 3' substituents in the sugar ring (-OH (dTTP)), -H, -N3, -NH2, -F, -O-CH3, no group (2',3'-didehydro-2',3'-dideoxythymidine triphosphate (d4TTP)), and those retaining the 3'-OH but with 4' additions (4'-C-methyl, 4'-C-ethyl) or sugar ring modifications (d-carba dTTP) were evaluated using pre-steady-state kinetics in low (0.5 mM) and high (6 mM) Mg2+ with HIV reverse transcriptase (RT). Analogues showed diminished observed incorporation rate constants (k obs) compared to dTTP ranging from about 2-fold (3'-H, -N3, and d4TTP with high Mg2+) to >10-fold (3'-NH2 and 3'-F with low Mg2+), while 3'-O-CH3 dTTP incorporated much slower than other analogues. Illustrating the importance of interactions between Mg2+ and the 3'-OH, k obs using 5 μM dTTP and 0.5 mM Mg2+ was only modestly slower (1.6-fold) than with 6 mM Mg2+, while analogues with 3' alterations incorporated 2.8-5.1-fold slower in 0.5 mM Mg2+. In contrast, 4'-C-methyl and d-carba dTTP, which retain the 3'-OH, were not significantly affected by Mg2+. Consistent with these results, analogues with 3' modifications were better inhibitors in 6 versus 0.5 mM Mg2+. Equilibrium dissociation constant (K D) and maximum incorporation rate (k pol) determinations for dTTP and analogues lacking a 3'-OH indicated that low Mg2+ caused a several-fold greater reduction in k pol with the analogues but did not significantly affect K D, results consistent with a role for 3'-OH/Mg2+ interactions in catalysis rather than nucleotide binding. Overall, results emphasize the importance of previously unreported interactions between Mg2+ and the 3'-OH of the incoming nucleotide and suggest that inhibitors with 3'-OH groups may have advantages in low free Mg2+ in physiological settings.