Inkjet 3D Printing of Polymers Resistant to Fungal Attachment

Bio Protoc. 2021 May 5;11(9):e4016. doi: 10.21769/BioProtoc.4016.

Abstract

Inkjet 3D printing is an additive manufacturing method that allows the user to produce a small batch of customized devices for comparative study versus commercial products. Here, we describe the use of a commercial 2D ink development system (Dimatix material printing) to manufacture small batches of 3D medical or other devices using a recently characterized fungal anti-attachment material. Such printed devices may resist problems that beset commercial medical products due to colonization by the fungal pathogen Candida albicans. By sequentially introducing the cross-section bitmaps of the product's CAD model and elevating the print head height using the auto-clicking script, we were able to create complex self-support geometries with the 2D ink development system. The use of this protocol allows researchers to produce a small batch of specimens for characterization from only a few grams of raw material. Additionally, we describe the testing of manufactured specimens for fungal anti-attachment. In comparison with most commercial AM systems, which require at least a few hundred grams of ink for printing trials, our protocol is well suited for smaller-scale production in material studies.

Keywords: 3D printing; Additive manufacturing; Candida albicans; Fungal biofilm; Inkjet.