Direct Mapping of Higher-Order RNA Interactions by SHAPE-JuMP

Biochemistry. 2021 Jun 29;60(25):1971-1982. doi: 10.1021/acs.biochem.1c00270. Epub 2021 Jun 14.

Abstract

Higher-order structure governs function for many RNAs. However, discerning this structure for large RNA molecules in solution is an unresolved challenge. Here, we present SHAPE-JuMP (selective 2'-hydroxyl acylation analyzed by primer extension and juxtaposed merged pairs) to interrogate through-space RNA tertiary interactions. A bifunctional small molecule is used to chemically link proximal nucleotides in an RNA structure. The RNA cross-link site is then encoded into complementary DNA (cDNA) in a single, direct step using an engineered reverse transcriptase that "jumps" across cross-linked nucleotides. The resulting cDNAs contain a deletion relative to the native RNA sequence, which can be detected by sequencing, that indicates the sites of cross-linked nucleotides. SHAPE-JuMP measures RNA tertiary structure proximity concisely across large RNA molecules at nanometer resolution. SHAPE-JuMP is especially effective at measuring interactions in multihelix junctions and loop-to-helix packing, enables modeling of the global fold for RNAs up to several hundred nucleotides in length, facilitates ranking of structural models by consistency with through-space restraints, and is poised to enable solution-phase structural interrogation and modeling of complex RNAs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acylation
  • Cross-Linking Reagents / chemistry
  • DNA, Complementary / chemistry
  • Nucleic Acid Conformation
  • Oxazines / chemistry
  • RNA / chemistry*
  • RNA / genetics
  • RNA-Directed DNA Polymerase / chemistry
  • RNA-Directed DNA Polymerase / genetics
  • Sequence Analysis, DNA

Substances

  • Cross-Linking Reagents
  • DNA, Complementary
  • Oxazines
  • RNA
  • RNA-Directed DNA Polymerase