Potential evidence of peripheral learning and memory in the arms of dwarf cuttlefish, Sepia bandensis

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021 Jul;207(4):575-594. doi: 10.1007/s00359-021-01499-x. Epub 2021 Jun 14.

Abstract

CREB (cAMP response element-binding) transcription factors are conserved markers of memory formation in the brain and peripheral circuits. We provide immunohistochemical evidence of CREB phosphorylation in the dwarf cuttlefish, Sepia bandensis, following the inaccessible prey (IP) memory experiment. During the IP experiment, cuttlefish are shown prey enclosed in a transparent tube, and tentacle strikes against the tube decrease over time as the cuttlefish learns the prey is inaccessible. The cues driving IP learning are unclear but may include sensory inputs from arms touching the tube. The neural activity marker, anti-phospho-CREB (anti-pCREB) was used to determine whether IP training stimulated cuttlefish arm sensory neurons. pCREB immunoreactivity occurred along the oral surface of the arms, including the suckers and epithelial folds surrounding the suckers. pCREB increased in the epithelial folds and suckers of trained cuttlefish. We found differential pCREB immunoreactivity along the distal-proximal axis of trained arms, with pCREB concentrated distally. Unequal CREB phosphorylation occurred among the 4 trained arm pairs, with arm pairs 1 and 2 containing more pCREB. The resulting patterns of pCREB in trained arms suggest that the arms obtain cues that may be salient for learning and memory of the IP experiment.

Keywords: CREB; Cuttlefish; Learning; Memory; Sepia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cyclic AMP Response Element-Binding Protein / metabolism*
  • Extremities / physiology
  • Learning / physiology*
  • Memory / physiology*
  • Phosphorylation
  • Sepia / physiology*

Substances

  • Cyclic AMP Response Element-Binding Protein