Impact of Wuhan lockdown on the spread of COVID-19 in China: a study based on the data of population mobility

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021 Feb 25;50(1):61-67. doi: 10.3724/zdxbyxb-2021-0021.

Abstract

This study aimed to quantitatively assess the effectiveness of the Wuhan lockdown measure on controlling the spread of coronavirus diesase 2019 (COVID-19). : Firstly,estimate the daily new infection rate in Wuhan before January 23,2020 when the city went into lockdown by consulting the data of Wuhan population mobility and the number of cases imported from Wuhan in 217 cities of Mainland China. Then estimate what the daily new infection rate would have been in Wuhan from January 24 to January 30th if the lockdown measure had been delayed for 7 days,assuming that the daily new infection in Wuhan after January 23 increased in a high,moderate and low trend respectively (using exponential, linear and logarithm growth models). Based on that,calculate the number of infection cases imported from Wuhan during this period. Finally,predict the possible impact of 7-day delayed lockdown in Wuhan on the epidemic situation in China using the susceptible-exposed-infectious-removed (SEIR) model. : The daily new infection rate in Wuhan was estimated to be 0.021%,0.026%,0.029%,0.033% and 0.070% respectively from January 19 to January 23. And there were at least 20 066 infection cases in Wuhan by January 23,2020. If Wuhan lockdown measure had been delayed for 7 days,the daily new infection rate on January 30 would have been 0.335% in the exponential growth model,0.129% in the linear growth model,and 0.070% in the logarithm growth model. Correspondingly,there would have been 32 075,24 819 and 20 334 infection cases travelling from Wuhan to other areas of Mainland China,and the number of cumulative confirmed cases as of March 19 in Mainland China would have been 3.3-3.9 times of the officially reported number. Conclusions: Timely taking city-level lockdown measure in Wuhan in the early stage of COVID-19 outbreak is essential in containing the spread of the disease in China.

Keywords: China; Coronavirus disease 2019; Epidemic spread; Human mobility; Non-pharmaceutical interventions; Susceptible-exposed-infectious-recovered model.

MeSH terms

  • COVID-19*
  • China / epidemiology
  • Cities
  • Communicable Disease Control*
  • Humans
  • SARS-CoV-2

Grants and funding

浙江大学新型冠状病毒(2019-nCoV)肺炎应急科研专项(2020XGZX003); 浙江省创新团队(2019R01007); 浙江省重点实验室(2020E10004); 浙江省自然科学基金(LEZ20H260002)