3D Electron Diffraction Structure Determination of Terrylene, a Promising Candidate for Intermolecular Singlet Fission

Chemphyschem. 2021 Aug 4;22(15):1631-1637. doi: 10.1002/cphc.202100320. Epub 2021 Jun 30.

Abstract

Herein we demonstrate the prowess of the 3D electron diffraction approach by unveiling the structure of terrylene, the third member in the series of peri-condensed naphthalene analogues, which has eluded structure determination for 65 years. The structure was determined by direct methods using electron diffraction data and corroborated by dispersion-inclusive density functional theory optimizations. Terrylene crystalizes in the monoclinic space group P21 /a, arranging in a sandwich-herringbone packing motif, similar to analogous compounds. Having solved the crystal structure, we use many-body perturbation theory to evaluate the excited-state properties of terrylene in the solid-state. We find that terrylene is a promising candidate for intermolecular singlet fission, comparable to tetracene and rubrene.

Keywords: crystal; electron diffraction; oligorylenes; singlet fission; terrylene.

Publication types

  • Research Support, Non-U.S. Gov't