Interactions between cattle breed type and anabolic implant strategy impact circulating serum metabolites, feedlot performance, feeding behavior, carcass characteristics, and economic return in beef steers

Domest Anim Endocrinol. 2021 Oct:77:106633. doi: 10.1016/j.domaniend.2021.106633. Epub 2021 May 1.

Abstract

Introducing Bos indicus (BI) genetics into a beef herd has the potential to increase environmental sustainability. When introducing BI genetics, there are concerns regarding negative impacts on temperament, growth, and carcass characteristics. Implants are routinely used in the United States, with majority of cattle on feed receiving an anabolic implant to improve growth and efficiency, however research regarding the interaction between cattle breed type and anabolic implants is limited. This research compared the use of implants in BI influenced animals versus Bos taurus in a feedlot setting. Twenty steers were stratified by initial weight in a 2 × 2 factorial design examining two different breeds: Angus (AN; n = 10) or Santa Gertrudis influenced (SG; n = 10), and two implant strategies: no implant (CON; n = 10) or a combined implant containing 120 mg TBA and 24 mg E2 (IMP; n = 10; Revalor-S, Merck Animal Health). We hypothesized that anabolic implants would improve growth and feedlot performance of BI influenced animals. Steers were randomly placed into covered pens equipped with GrowSafe bunks and fed the same ration for 129 d. Steers were weighed every 28 d. Dry matter intake, feeding behavior, and carcass data of the steers was collected. Blood was collected and harvested as serum on d 0, 2, 10, 28 and every 28 d after that, and analyzed for serum urea nitrogen (SUN), haptoglobin, and 25HydroxyVitamin D. Angus steers tended to gain more (P = 0.06) weight than SG, while IMP tended to gain more (P = 0.10) weight than CON with no breed × treatment interaction observed (P > 0.10). A breed × treatment interaction was observed when analyzing SUN (P = 0.05) and haptoglobin (P = 0.02) concentrations. Serum 25HydroxyVitmain D concentrations tended to be increased (P = 0.09) in SG-IMP steers compared to SG-CON steers. Angus steers tended (P = 0.10) to have greater amounts of marbling compared to SG steers, while SG steers had improved (P = 0.04) yield grade. Economic return was decreased by $46 a head when introducing SG genetics, while implanting steers improved economic return by $46 a head. This research provides evidence suggesting that BI influenced animals may respond differently to anabolic implants when compared to BT animals. Economic analyses demonstrate that anabolic implants improve economic return to beef producers, while introducing SG genetics decreases economic return in animals raised in more temperate climates.

Keywords: Beef; Bos indicus; Bos taurus; Estradiol; Growth; Trenbolone acetate.

Publication types

  • Randomized Controlled Trial, Veterinary
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Blood Urea Nitrogen
  • Body Composition*
  • Cattle / genetics
  • Feeding Behavior*