Topological Field Theory of Non-Hermitian Systems

Phys Rev Lett. 2021 May 28;126(21):216405. doi: 10.1103/PhysRevLett.126.216405.

Abstract

Non-Hermiticity gives rise to unique topological phases without Hermitian analogs. However, the effective field theory has yet to be established. Here, we develop a field-theoretical description of the intrinsic non-Hermitian topological phases. Because of the dissipative and nonequilibrium nature of non-Hermiticity, our theory is formulated solely in terms of spatial degrees of freedom, which contrasts with the conventional theory defined in spacetime. Our theory provides a universal understanding of non-Hermitian topological phenomena such as the unidirectional transport in one dimension and the chiral magnetic skin effect in three dimensions. Furthermore, it systematically predicts new physics; we illustrate this by revealing transport phenomena and skin effects in two dimensions induced by a perpendicular spatial texture. From the field-theoretical perspective, the non-Hermitian skin effect, i.e., the anomalous localization due to non-Hermiticity, is shown to be a signature of an anomaly.