Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition

Adv Mater. 2021 Jul;33(30):e2007885. doi: 10.1002/adma.202007885. Epub 2021 Jun 10.

Abstract

The design and fabrication of lattice-strained platinum catalysts achieved by removing a soluble core from a platinum shell synthesized via atomic layer deposition, is reported. The remarkable catalytic performance for the oxygen reduction reaction (ORR), measured in both half-cell and full-cell configurations, is attributed to the observed lattice strain. By further optimizing the nanoparticle geometry and ionomer/carbon interactions, mass activity close to 0.8 A mgPt -1 @0.9 V iR-free is achievable in the membrane electrode assembly. Nevertheless, active catalysts with high ORR activity do not necessarily lead to high performance in the high-current-density (HCD) region. More attention shall be directed toward HCD performance for enabling high-power-density hydrogen fuel cells.

Keywords: fuel cells; lattice strain; membrane electrode assembly; oxygen reduction reaction; rotating disk electrodes.