SNP detection and population structure evaluation of Salix gordejevii Y. L. Chang et Skv. in Hunshandake Sandland, Inner Mongolia, China

Physiol Mol Biol Plants. 2021 May;27(5):997-1005. doi: 10.1007/s12298-021-00994-4. Epub 2021 Apr 24.

Abstract

Single nucleotide polymorphisms (SNPs) are the most abundant and richest form of genomic polymorphism and, hence, are highly favorable markers for genetic map construction and genome-wide association studies. Based on the DNA specific-locus amplified fragment sequencing (SLAF-seq) for large-scale SNP detection, the genetic diversity and population structure of Salix gordejevii Y. L. Chang et Skv., a valuable sand-fixing shrub, was assessed in 199 accessions from 20 populations in Hunshandake Sandland of northern China. A total of 623.15 M reads resulted in 30.49 × sequencing depth on average and a mean Q30 of 95.70%, and 2,287,715 SNPs in 178,509 polymorphic SLAF tags were obtained. By discarding minor allele frequency > 0.05 and integrity > 0.8, a total of 93,600 SNPs were retained for population genetic analyses, which revealed that 199 individuals could be divided into six groups based on cross-validation errors. However, this grouping pattern did not match the geographical distribution, indicating that there is no apparent geographic barrier in the blank areas where S. gordejevii was not distributed in Hunshandake Sandland. In addition, the physical distance of linkage disequilibrium decay in the analyzed S. gordejevii individuals was 18.5 kb when r 2 = 0.1. The linkage disequilibrium decay distances for different chromosomes varied from 4.6 kb (chromosome 16) to 37.8 kb (chromosome 3). The obtained SNPs offer suitable marker resources for further genetic and genomic studies and will benefit S. gordejevii breeding programs.

Keywords: Linkage disequilibrium; Population structure; SLAF-seq; SNP; Salix gordejevii.