Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications

Chem Rev. 2021 Jul 14;121(13):8095-8160. doi: 10.1021/acs.chemrev.1c00044. Epub 2021 Jun 9.

Abstract

Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biosensing Techniques*
  • Humans