Tree crown injury from wildland fires: causes, measurement and ecological and physiological consequences

New Phytol. 2021 Sep;231(5):1676-1685. doi: 10.1111/nph.17539. Epub 2021 Jul 3.

Abstract

The dead foliage of scorched crowns is one of the most conspicuous signatures of wildland fires. Globally, crown scorch from fires in savannas, woodlands and forests causes tree stress and death across diverse taxa. The term crown scorch, however, is inconsistently and ambiguously defined in the literature, causing confusion and conflicting interpretation of results. Furthermore, the underlying mechanisms causing foliage death from fire are poorly understood. The consequences of crown scorch - alterations in physiological, biogeochemical and ecological processes and ecosystem recovery pathways - remain largely unexamined. Most research on the topic assumes the mechanism of leaf and bud death is exposure to lethal air temperatures, with few direct measurements of lethal heating thresholds. Notable information gaps include how energy transfer injures and kills leaves and buds, how nutrients, carbohydrates, and hormones respond, and what physiological consequences lead to mortality. We clarify definitions to encourage use of unified terminology for foliage and bud necrosis resulting from fire. We review the current understanding of the physical mechanisms driving foliar injury, discuss the physiological responses, and explore novel ecological consequences of crown injury from fire. From these elements, we propose research needs for the increasingly interdisciplinary study of fire effects.

Keywords: convection; crown scorch; energy dose; fire effects; leaves; plant hydraulics; post-fire tree mortality; tree stress.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Ecosystem
  • Fires*
  • Forests
  • Trees
  • Wildfires*